3.56 \(\int \frac{\csc (c+d x)}{a+b \tan (c+d x)} \, dx\)

Optimal. Leaf size=66 \[ \frac{b \tanh ^{-1}\left (\frac{b \cos (c+d x)-a \sin (c+d x)}{\sqrt{a^2+b^2}}\right )}{a d \sqrt{a^2+b^2}}-\frac{\tanh ^{-1}(\cos (c+d x))}{a d} \]

[Out]

-(ArcTanh[Cos[c + d*x]]/(a*d)) + (b*ArcTanh[(b*Cos[c + d*x] - a*Sin[c + d*x])/Sqrt[a^2 + b^2]])/(a*Sqrt[a^2 +
b^2]*d)

________________________________________________________________________________________

Rubi [A]  time = 0.128764, antiderivative size = 66, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.263, Rules used = {3518, 3110, 3770, 3074, 206} \[ \frac{b \tanh ^{-1}\left (\frac{b \cos (c+d x)-a \sin (c+d x)}{\sqrt{a^2+b^2}}\right )}{a d \sqrt{a^2+b^2}}-\frac{\tanh ^{-1}(\cos (c+d x))}{a d} \]

Antiderivative was successfully verified.

[In]

Int[Csc[c + d*x]/(a + b*Tan[c + d*x]),x]

[Out]

-(ArcTanh[Cos[c + d*x]]/(a*d)) + (b*ArcTanh[(b*Cos[c + d*x] - a*Sin[c + d*x])/Sqrt[a^2 + b^2]])/(a*Sqrt[a^2 +
b^2]*d)

Rule 3518

Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Int[(Sin[e + f*x]
^m*(a*Cos[e + f*x] + b*Sin[e + f*x])^n)/Cos[e + f*x]^n, x] /; FreeQ[{a, b, e, f}, x] && IntegerQ[(m - 1)/2] &&
 ILtQ[n, 0] && ((LtQ[m, 5] && GtQ[n, -4]) || (EqQ[m, 5] && EqQ[n, -1]))

Rule 3110

Int[(cos[(c_.) + (d_.)*(x_)]^(m_.)*sin[(c_.) + (d_.)*(x_)]^(n_.))/(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(
c_.) + (d_.)*(x_)]), x_Symbol] :> Int[ExpandTrig[(cos[c + d*x]^m*sin[c + d*x]^n)/(a*cos[c + d*x] + b*sin[c + d
*x]), x], x] /; FreeQ[{a, b, c, d, m, n}, x] && IntegersQ[m, n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3074

Int[(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> -Dist[d^(-1), Subst[Int
[1/(a^2 + b^2 - x^2), x], x, b*Cos[c + d*x] - a*Sin[c + d*x]], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2,
0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\csc (c+d x)}{a+b \tan (c+d x)} \, dx &=\int \frac{\cot (c+d x)}{a \cos (c+d x)+b \sin (c+d x)} \, dx\\ &=\int \left (\frac{\csc (c+d x)}{a}-\frac{b}{a (a \cos (c+d x)+b \sin (c+d x))}\right ) \, dx\\ &=\frac{\int \csc (c+d x) \, dx}{a}-\frac{b \int \frac{1}{a \cos (c+d x)+b \sin (c+d x)} \, dx}{a}\\ &=-\frac{\tanh ^{-1}(\cos (c+d x))}{a d}+\frac{b \operatorname{Subst}\left (\int \frac{1}{a^2+b^2-x^2} \, dx,x,b \cos (c+d x)-a \sin (c+d x)\right )}{a d}\\ &=-\frac{\tanh ^{-1}(\cos (c+d x))}{a d}+\frac{b \tanh ^{-1}\left (\frac{b \cos (c+d x)-a \sin (c+d x)}{\sqrt{a^2+b^2}}\right )}{a \sqrt{a^2+b^2} d}\\ \end{align*}

Mathematica [A]  time = 0.105158, size = 75, normalized size = 1.14 \[ \frac{-\frac{2 b \tanh ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )-b}{\sqrt{a^2+b^2}}\right )}{\sqrt{a^2+b^2}}+\log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )-\log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )}{a d} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[c + d*x]/(a + b*Tan[c + d*x]),x]

[Out]

((-2*b*ArcTanh[(-b + a*Tan[(c + d*x)/2])/Sqrt[a^2 + b^2]])/Sqrt[a^2 + b^2] - Log[Cos[(c + d*x)/2]] + Log[Sin[(
c + d*x)/2]])/(a*d)

________________________________________________________________________________________

Maple [A]  time = 0.056, size = 65, normalized size = 1. \begin{align*} -2\,{\frac{b}{ad\sqrt{{a}^{2}+{b}^{2}}}{\it Artanh} \left ( 1/2\,{\frac{2\,a\tan \left ( 1/2\,dx+c/2 \right ) -2\,b}{\sqrt{{a}^{2}+{b}^{2}}}} \right ) }+{\frac{1}{ad}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(d*x+c)/(a+b*tan(d*x+c)),x)

[Out]

-2/d*b/a/(a^2+b^2)^(1/2)*arctanh(1/2*(2*a*tan(1/2*d*x+1/2*c)-2*b)/(a^2+b^2)^(1/2))+1/d/a*ln(tan(1/2*d*x+1/2*c)
)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)/(a+b*tan(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.37691, size = 450, normalized size = 6.82 \begin{align*} \frac{\sqrt{a^{2} + b^{2}} b \log \left (\frac{2 \, a b \cos \left (d x + c\right ) \sin \left (d x + c\right ) +{\left (a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, a^{2} - b^{2} - 2 \, \sqrt{a^{2} + b^{2}}{\left (b \cos \left (d x + c\right ) - a \sin \left (d x + c\right )\right )}}{2 \, a b \cos \left (d x + c\right ) \sin \left (d x + c\right ) +{\left (a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} + b^{2}}\right ) -{\left (a^{2} + b^{2}\right )} \log \left (\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right ) +{\left (a^{2} + b^{2}\right )} \log \left (-\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right )}{2 \,{\left (a^{3} + a b^{2}\right )} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)/(a+b*tan(d*x+c)),x, algorithm="fricas")

[Out]

1/2*(sqrt(a^2 + b^2)*b*log((2*a*b*cos(d*x + c)*sin(d*x + c) + (a^2 - b^2)*cos(d*x + c)^2 - 2*a^2 - b^2 - 2*sqr
t(a^2 + b^2)*(b*cos(d*x + c) - a*sin(d*x + c)))/(2*a*b*cos(d*x + c)*sin(d*x + c) + (a^2 - b^2)*cos(d*x + c)^2
+ b^2)) - (a^2 + b^2)*log(1/2*cos(d*x + c) + 1/2) + (a^2 + b^2)*log(-1/2*cos(d*x + c) + 1/2))/((a^3 + a*b^2)*d
)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\csc{\left (c + d x \right )}}{a + b \tan{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)/(a+b*tan(d*x+c)),x)

[Out]

Integral(csc(c + d*x)/(a + b*tan(c + d*x)), x)

________________________________________________________________________________________

Giac [A]  time = 1.43594, size = 127, normalized size = 1.92 \begin{align*} \frac{\frac{b \log \left (\frac{{\left | 2 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 2 \, b - 2 \, \sqrt{a^{2} + b^{2}} \right |}}{{\left | 2 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 2 \, b + 2 \, \sqrt{a^{2} + b^{2}} \right |}}\right )}{\sqrt{a^{2} + b^{2}} a} + \frac{\log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) \right |}\right )}{a}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)/(a+b*tan(d*x+c)),x, algorithm="giac")

[Out]

(b*log(abs(2*a*tan(1/2*d*x + 1/2*c) - 2*b - 2*sqrt(a^2 + b^2))/abs(2*a*tan(1/2*d*x + 1/2*c) - 2*b + 2*sqrt(a^2
 + b^2)))/(sqrt(a^2 + b^2)*a) + log(abs(tan(1/2*d*x + 1/2*c)))/a)/d